A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-world ODE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear ordinary differential equations. The author’s primary focus is on models expressed as systems of ODEs, which generally result by neglecting spatial effects so that the ODE dependent variables are uniform in space. Therefore, time is the independent variable in most applications of ODE systems. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for ODEs Models as systems of ODEs with explanations of the associated chemistry, physics, biology, and physiology as well as the algebraic equations used to calculate intermediate variables Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general ODE computation through various biomolecular science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order.

Praise for the Second Edition «This book is an excellent introduction to the wide field of boundary value problems.»—Journal of Engineering Mathematics «No doubt this textbook will be useful for both students and research workers.»—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.

The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations in mathematical physics in a variety of coordinate systems and geometry and their solutions, including a differential geometric formulation, using the method of separation of variables. With problems and modern examples from the fields of nano-technology and other areas of physics. The fluency of the text and the high quality of graphics make the topic easy accessible. The organization of the content by coordinate systems rather than by equation types is unique and offers an easy access. The authors consider recent research results which have led to a much increased pedagogical understanding of not just this topic but of many other related topics in mathematical physics, and which like the explicit discussion on differential geometry shows – yet have not been treated in the older texts. To the benefit of the reader, a summary presents a convenient overview on all special functions covered. Homework problems are included as well as numerical algorithms for computing special functions. Thus this book can serve as a reference text for advanced undergraduate students, as a textbook for graduate level courses, and as a self-study book and reference manual for physicists, theoretically oriented engineers and traditional mathematicians.

Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).

Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes: First-Order Differential Equations Higher-Order Linear Equations Applications of Higher-Order Linear Equations Systems of Linear Differential Equations Laplace Transform Series Solutions Systems of Nonlinear Differential Equations In addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers. Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).

Enables chemical engineers to use mathematics to solve common on-the-job problems With its clear explanations, examples, and problem sets, Applied Mathematics and Modeling for Chemical Engineers has enabled thousands of chemical engineers to apply mathematical principles to successfully solve practical problems. The book introduces traditional techniques to solve ordinary differential equations as well as analytical methods to deal with important classes of finite-difference equations. It then explores techniques for solving partial differential equations from classical methods to finite-transforms, culminating with??numerical methods??including orthogonal collocation. This Second Edition demonstrates how classical mathematics solves a broad range of new applications that have arisen since the publication of the acclaimed first edition. Readers will find new materials and problems dealing with such topics as: Brain implant drug delivery Carbon dioxide storage Chemical reactions in nanotubes Dissolution of pills and pharmaceutical capsules Honeycomb reactors used in catalytic converters New models of physical phenomena such as bubble coalescence Like the first edition, this Second Edition provides plenty of worked examples that explain each step on the way to finding a problem's solution. Homework problems at the end of each chapter are designed to encourage readers to more deeply examine the underlying logic of the mathematical techniques used to arrive at the answers. Readers can refer to the references, also at the end of each chapter, to explore individual topics in greater depth. Finally, the text's appendices provide additional information on numerical methods for solving algebraic equations as well as a detailed explanation of numerical integration algorithms. Applied Mathematics and Modeling for Chemical Engineers is recommended for all students in chemical engineering as well as professional chemical engineers who want to improve their ability to use mathematics to solve common on-the-job problems.

This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.

A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.

A unified and coherent treatment of analytical, computational and experimental techniques of nonlinear dynamics with numerous illustrative applications. Features a discourse on geometric concepts such as Poincare maps. Discusses chaos, stability and bifurcation analysis for systems of differential and algebraic equations. Includes scores of examples to facilitate understanding.

## s lui h numerical analysis of partial differential equations в наличии / купить интернет-магазине

## S. Lui H Numerical Analysis of Partial Differential Equations

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

## Richard Bernatz Fourier Series and Numerical Methods for Partial Differential Equations

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

## William Schiesser E. Differential Equation Analysis in Biomedical Science and Engineering. Ordinary Differential Equation Applications with R

Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-world ODE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear ordinary differential equations. The author’s primary focus is on models expressed as systems of ODEs, which generally result by neglecting spatial effects so that the ODE dependent variables are uniform in space. Therefore, time is the independent variable in most applications of ODE systems. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for ODEs Models as systems of ODEs with explanations of the associated chemistry, physics, biology, and physiology as well as the algebraic equations used to calculate intermediate variables Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general ODE computation through various biomolecular science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

## Michael Greenberg D. Solutions Manual to accompany Ordinary Differential Equations

Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order.

## Stakgold Ivar Green's Functions and Boundary Value Problems

Praise for the Second Edition «This book is an excellent introduction to the wide field of boundary value problems.»—Journal of Engineering Mathematics «No doubt this textbook will be useful for both students and research workers.»—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.

## Steven Holzner Differential Equations For Dummies

The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

## Willatzen Morten Separable Boundary-Value Problems in Physics

Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations in mathematical physics in a variety of coordinate systems and geometry and their solutions, including a differential geometric formulation, using the method of separation of variables. With problems and modern examples from the fields of nano-technology and other areas of physics. The fluency of the text and the high quality of graphics make the topic easy accessible. The organization of the content by coordinate systems rather than by equation types is unique and offers an easy access. The authors consider recent research results which have led to a much increased pedagogical understanding of not just this topic but of many other related topics in mathematical physics, and which like the explicit discussion on differential geometry shows – yet have not been treated in the older texts. To the benefit of the reader, a summary presents a convenient overview on all special functions covered. Homework problems are included as well as numerical algorithms for computing special functions. Thus this book can serve as a reference text for advanced undergraduate students, as a textbook for graduate level courses, and as a self-study book and reference manual for physicists, theoretically oriented engineers and traditional mathematicians.

## Collocation Methods for Volterra Integral and Related Functional Differential Equations

Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

## Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).

## Michael Greenberg D. Ordinary Differential Equations

Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes: First-Order Differential Equations Higher-Order Linear Equations Applications of Higher-Order Linear Equations Systems of Linear Differential Equations Laplace Transform Series Solutions Systems of Nonlinear Differential Equations In addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers. Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.

## Frédéric Muttin Marine Coastal and Water Pollutions. Oil Spill Studies

Identifying efficient solutions to protect coastal regions from marine pollution requires expertise from a range of specialties and strategic approaches. This book gathers information on the impact of oil spills at a coastal level from different experts’ points of view, identifying synergies between domains such as mathematics, numerical modeling, mechanics, biology, economics and law. The collaborative research presented here is based on the 4th International Workshop on Anti-Pollution and Marine Coastal Water Pollution, held in La Rochelle, France at the Engineering School EIGSI, in April 2012. The areas addressed include: materials and structures (fluid-structure and capture interaction, cable and membrane equations, optimization); coastal hydrodynamics (computational fluid dynamics, numerical analysis of shallow water equations, analytical and numerical derivatives); biological impacts (biology, multivariate analysis, indicators); and economics and law (compensation costs, insurance coverage, coastal vulnerability).

## Do Duong D. Applied Mathematics And Modeling For Chemical Engineers

Enables chemical engineers to use mathematics to solve common on-the-job problems With its clear explanations, examples, and problem sets, Applied Mathematics and Modeling for Chemical Engineers has enabled thousands of chemical engineers to apply mathematical principles to successfully solve practical problems. The book introduces traditional techniques to solve ordinary differential equations as well as analytical methods to deal with important classes of finite-difference equations. It then explores techniques for solving partial differential equations from classical methods to finite-transforms, culminating with??numerical methods??including orthogonal collocation. This Second Edition demonstrates how classical mathematics solves a broad range of new applications that have arisen since the publication of the acclaimed first edition. Readers will find new materials and problems dealing with such topics as: Brain implant drug delivery Carbon dioxide storage Chemical reactions in nanotubes Dissolution of pills and pharmaceutical capsules Honeycomb reactors used in catalytic converters New models of physical phenomena such as bubble coalescence Like the first edition, this Second Edition provides plenty of worked examples that explain each step on the way to finding a problem's solution. Homework problems at the end of each chapter are designed to encourage readers to more deeply examine the underlying logic of the mathematical techniques used to arrive at the answers. Readers can refer to the references, also at the end of each chapter, to explore individual topics in greater depth. Finally, the text's appendices provide additional information on numerical methods for solving algebraic equations as well as a detailed explanation of numerical integration algorithms. Applied Mathematics and Modeling for Chemical Engineers is recommended for all students in chemical engineering as well as professional chemical engineers who want to improve their ability to use mathematics to solve common on-the-job problems.

## Vigirdas Mackevicius Introduction to Stochastic Analysis. Integrals and Differential Equations

This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.

## Kopylova Elena Dispersion Decay and Scattering Theory

A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations. The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included. Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.

## Balachandran Balakumar Applied Nonlinear Dynamics. Analytical, Computational and Experimental Methods

A unified and coherent treatment of analytical, computational and experimental techniques of nonlinear dynamics with numerous illustrative applications. Features a discourse on geometric concepts such as Poincare maps. Discusses chaos, stability and bifurcation analysis for systems of differential and algebraic equations. Includes scores of examples to facilitate understanding.